Inference for Normal Mixtures in Mean and Variance

نویسندگان

  • Jiahua Chen
  • Xianming Tan
  • Runchu Zhang
  • JIAHUA CHEN
  • RUNCHU ZHANG
چکیده

A finite mixture of normal distributions, in both mean and variance parameters, is a typical finite mixture in the location and scale families. Because the likelihood function is unbounded for any sample size, the ordinary maximum likelihood estimator is not consistent. Applying a penalty to the likelihood function to control the estimated component variances is thought to restore the optimal properties of the likelihood approach. Yet this proposal lacks practical guidelines, has not been indisputably justified, and has not been investigated in the most general setting. In this paper, we present a new and solid proof of consistency when the putative number of components is equal to, and when it is larger than, the true number of components. We also provide conditions on the required size of the penalty and study the invariance properties. The finite sample properties of the new estimator are also demonstrated through simulations and an example from genetics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive neuro-fuzzy inference system (ANFIS) applied for spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid

The UV-spectrophotometric method of analysis was proposed for simultaneous determination of fluoxetine (FLX) and sertraline (SRT). Considering the strong spectral overlap between UV-Vis spectra of these compounds, a previous separation should be carried out in order to determine them by conventional spectrophotometric techniques. Here, full-spectrum multivariate calibrations adaptive neuro-fuzz...

متن کامل

Comparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions

Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...

متن کامل

Dependency Models based on Generalized Gaussian Scale Mixtures and Normal Variance Mean Mixtures

We extend the Gaussian scale mixture model of dependent subspace source densities to include non-radially symmetric densities using Generalized Gaussian random variables linked by a common variance. We also introduce the modeling of skew using the Normal Variance-Mean mixture model. We give closed form expressions for likelihoods and parameter updates in the EM algorithm.

متن کامل

Data augmentation for non-Gaussian regression models using variance-mean mixtures

We use the theory of normal variance-mean mixtures to derive a data-augmentation scheme that unifies a wide class of statistical models under a single framework. This generalizes existing theory on normal variance mixtures for priors in regression and classification. It also allows variants of the expectation-maximization algorithm to be brought to bear on a much wider range of models than prev...

متن کامل

A Generalized Normal Mean Variance Mixture for Return Processes in Finance

Time-changed Brownian motions are extensively applied as mathematical models for asset returns in Finance. Time change is interpreted as a switch to trade-related business time, different from calendar time. Time-changed Brownian motions can be generated by infinite divisible normal mixtures. The standard multivariate normal mean variance mixtures assume a common mixing variable. This correspon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008